

Mark Scheme (Results)

January 2022

Pearson Edexcel International GCSE
In Chemistry (4CH1) Paper 2CR

	uestion number	Answer	Notes	Marks
1	(a)	M1 oxygen	ALLOW air	2
		M2 water / water vapour	ALLOW moisture	
			ALLOW answers in either order	
	(b) (i)	iodine		1
	(ii)	methane		1
	(iii)	gold		1
				Total 5

Question number	Answer	Notes	Marks
2 (a)	M1 heated	ALLOW boiled IGNORE vapourised/evaporated	3
	M2 fractionating	ACCEPT fractional distillation	
	M3 boiling point(s)	ACCEPT boiling temperature(s) IGNORE melting point(s)/low density	1
(b)	road surfacing / roofing	ALLOW roads	'
(c) (i)	pentane		1
(ii)	$(M_r = 5 \times 12 + 12 \times 1 =) 72$		1

Question number	Answer	Notes	Marks
2 (d)	M1 alumina / silica	ACCEPT aluminium oxide / silicon dioxide / Al ₂ O ₃ / SiO ₂ / zeolite(s) / aluminosilicate(s)	2
	M2 any temperature in the range 600 - 700 °C inclusive		
(e)	$(C_{10}H_{22} \rightarrow C_4H_{10}) + C_2H_4 + C_4H_8$	alkenes can be in either order	2
	M1 C ₂ H ₄		
	M2 C ₄ H ₈	ALLOW 1 mark for C ₆ H ₁₂ / 2C ₃ H ₆ / C ₃ H ₆ + C ₃ H ₆ ALLOW correct displayed formulae	
			Total 10

Question number	Answer	Notes	Marks
3 (a)	A description that includes six of the following points		6
	M1 use the pipette to add (25 cm³ of) potassium hydroxide (solution) to the (conical) flask		
	M2 add a few drops of methyl orange (to the flask)		
	M3 add sulfuric acid to the burette and record the initial burette reading	ALLOW fill burette with sulfuric acid to "0" mark	
	M4 add sulfuric acid (from the burette) to the flask, swirling (continuously)	ALLOW shaking (gently) / stirring	
	M5 until the (methyl orange) indicator turns red/orange		
	M6 take the final burette reading and find volume of acid added (by finding difference between initial and final burette readings)	ALLOW take final burette reading only if previously filled burette to "0" mark	
	M7 repeat (the titration) adding the acid dropwise near the end-point / repeat (the titration) to obtain concordant results	ACCEPT repeat (the titration) to obtain results within 0.2 cm ³ of each other	
(b) (i)	M1 0.0250 x 0.240 OR <u>25.0 x 0.240</u> 1000	correct answer without working scores 2	2
	M2 0.006(00)	If no division by 1000 giving an answer of 6 award 1 mark	
(ii)	(0.006 ÷ 2 =) 0.003	ALLOW ECF from (i)	1
(iii)	M1 <u>0.003(00) x 1000</u> 15.00		2
	M2 0.2(00)	ALLOW ECF from (ii)	
		correct answer without working scores 2	
		answer to (ii) ÷ 15.00 scores 1	
		do not penalise not multiplying by 1000 in (iii) if they have not divided by 1000 in (i)	
			Total 11

Question number		Answer	Notes	Marks
4 (a)	structural formula	CH₃COOH	1 mark for each correct answer	3
	name	ethanoic acid	ALLOW acetic acid	
	empirical formula	CH₂O		
	displayed formula	H-Ç-Ç(Must show O-H bond	
(b) (i)	M1 potassium dichro	omate(VI)	VI not essential for the mark ACCEPT sodium dichromate(VI) ALLOW K ₂ Cr ₂ O ₇	2
	M2 (dilute) sulfuric	acid	ALLOW concentrated sulfuric acid ALLOW H ₂ SO ₄	
			ACCEPT reagents in either order	
(ii)	B orange to green			1
	green to orange C is incorrect as the red to yellow	colour does not change from colour does not change from colour does not change from		

Question			
number	Answer	Notes	Marks
4 (c) (i)	alcohols are flammable/might catch fire/might ignite C methyl propanoate A ethyl methanoate is not the correct name of the compound B methyl ethanoate is not the correct name of the compound D propyl methanoate is not the correct name of the compound	ACCEPT esters/mixture are/is flammable/might catch fire/might ignite ALLOW alcohol/ester/carboxylic acid might evaporate	1
			Total 8

Question number	Answer	Notes	Marks
5 (a) (i)	(produces) acid rain	ALLOW any detrimental effect of acid rain e.g. kills fish, damages limestone buildings	1
(ii)	 M1 find moles of sulfur M2 multiply moles by 24 M3 answer in standard form 		3
	Example calculation		
	M1 6.4 x $10^6 \div 32$ OR $2.0 \times 10^5 / 200000$		
	M2 2.0 x 10 ⁵ x 24 / 200 000 x 24 / 4800 000	ALLOW ECF as long as an attempt has been made to calculate moles	
	M3 4.8 x 10 ⁶	Correct answer without working scores 3	
		4 800 000 (dm³) without working scores 2	
(b) (i)	An explanation that links the following two points		2
	M1 provides an alternative (reaction) pathway/route		
	M2 with a lower activation energy OWTTE	ACCEPT so more particles/collisions have energy greater than the activation energy	
		ALLOW lowers the energy needed to start the reaction	
(ii)	fewer moles (of gas) on RHS (than on (LHS)	ALLOW 3 moles (of gas) on LHS and 2 moles (of) gas on RHS ALLOW fewer moles of product/SO ₃ (gas) (than of reactants/SO ₂ and O ₂ (gas))	1
		ALLOW molecules in place of moles IGNORE references to rate	
(iii)	as yield is approximately 98% /very high (it is not necessary to increase the pressure) OWTTE	ALLOW reference to reaction rate (already high enough) as catalyst used OWTTE	1

Question number	Answer	Notes	Marks
5 (c)	M1 SO_3 + H_2SO_4 \rightarrow $H_2S_2O_7$ M2 $H_2S_2O_7$ + H_2O \rightarrow $2H_2SO_4$	ALLOW multiples	2
(d)	M1 (2 x 14 ÷ 132) x 100 M2 21.21 (%)	ALLOW any number of sig figs except 1 ALLOW ECF from M1 as long as 132 used correctly Correct answer without working scores 2	2
			Total 12

Question number	₃Answer	Notes	Marks
6 (a)	A description that refers to the following three points M1 filter M2 wash the precipitate/solid/lead(II) bromide /residue (with distilled water) M3 dry with filter paper/in a (warm) oven	ALLOW leave to dry or any other suitable method REJECT direct heating e.g. with a Bunsen burner If description relates to preparation of a soluble salt allow 1 mark only for M3 for a suitable method of drying the solid	3
(b)	M1 solid lead(II) bromide does not conduct electricity M2 because ions cannot move/are in fixed positions	ALLOW lead(II) bromide only conducts when molten ALLOW when lead(II) bromide is solid no electricity/current flow(s) through the circuit/lamp REJECT reference to (delocalised) electrons / atoms cannot move in solid	2

Question	Answer	Notes	Marks
number 6 (c) (i)	brown vapour/gas/fumes (of bromine)	ALLOW orange/orange- brown	1
(ii)	An explanation that links the following four points	Penalise incorrect use of ide/ine once only	4
	M1 bromide ions are negatively charged / Br	ALLOW bromide ions are anions	
	M2 (so bromide ions/they) are attracted to the positive electrode	ALLOW anode	
	M3 (at the positive electrode) bromide ions/they lose/give up electron(s) (to form bromine atoms)	ALLOW bromide ions are oxidised ALLOW Br $^{-} \rightarrow$ Br + e $^{(-)}$	
	M4 (bromine atoms) join in pairs to form bromine molecules/Br ₂ OWTTE	ALLOW Br + Br \rightarrow Br ₂	
		$2Br^- \rightarrow Br_2 + 2e^{(-)}$ scores M1 M3 and M4	
(d)	$Pb^{2+}(l) + 2e^{(-)} \rightarrow Pb(s)$	ALLOW Pb(l)	2
	M1 formulae and balancing correct	ALLOW multiples and fractions	
	M2 both state symbols correct	ALLOW M2 ECF if charge on lead ion and/or balancing are incorrect	
			Total 12

Question	Answer	Notes	Marks
number	the state of the s		
7 (a)	gives out thermal energy/heat (energy)		1
(b)	 M1 expression for ∑ bond energies of reactants/bonds broken M2 expression for ∑ bond energies of products/bonds made or evaluation M3 correct equation linking M1, M2 and value of ΔH M4 evaluation of Cl-Cl bond energy 		4
	Example calculation	Correct answer without working scores 4	
	M1 (Σ bond energies of reactants =) 436 + X	ACCEPT E(Cl- Cl) or any suitable symbol or expression for X	
	M2 (Σ bond energies of products =) 2 x 431 OR 862(kJ)		
	M3 - 184 = 436 + X - 862 OR X = - 184 + 862 - 436	ALLOW M3 ECF if 431 for M2	
		If not used (-)184 in M3 can only score M1 M2	
		M3 subsumes M1 M2	
	M4 X = 242 (kJ/mol)	ALLOW M4 ECF on M3 as long as M3 involves 436, X, 862 (or 431) and (-)184	

Question number	Answer	Notes	Marks
7 (c)	An explanation that links the following three points		3
	M1 energy needed to break bonds / bond-breaking is endothermic	ALLOW energy is absorbed/taken in	
	M2 energy given out when bonds are formed / bond-forming is exothermic	ALLOW energy is released	
	M3 energy given out is greater than energy needed (so exothermic) OWTTE	M3 DEP M1 M2	
		more energy released when new bonds are formed (in products) than is needed to break the bonds (in reactants) OWTTE scores M1 M2 M3 If any contradictory	
		statements max 1	
(d)	M1 horizontal line to show products below reactants and to the right of reactants and labelled 2HCl	ALLOW products for 2HCl	4
	M2 vertical line from H_2 + Cl_2 level to 2HCl/products level and labelled enthalpy change/ $\Delta H/$ -184	ACCEPT double headed arrow or arrow pointing from H ₂ + Cl ₂ level to 2HCl/products level	
		REJECT arrow pointing from 2HCl/products level to H ₂ + Cl ₂ level	
	M3 curve with hump/peak shown on diagram going up from H ₂ + Cl ₂ line and ending at 2HCl/products line		
	$M4$ vertical line from H_2 + Cl_2 level to top of hump level and labelled activation energy/ E_a	ACCEPT double headed arrow or arrow pointing from H ₂ + Cl ₂ level to top of hump	
		REJECT arrow pointing from top of hump to H ₂ + Cl ₂ level	
		If endothermic diagram shown, can score M2 M3 (peak/hump must be above products line) and M4	Total 12